1. Balance the following chemical equations.

a. $\underline{\hspace{1cm}}$ NaNO3 \rightarrow $\underline{\hspace{1cm}}$ NaNO2 + $\underline{\hspace{1cm}}$ O2

b. $\underline{\hspace{1cm}}$ NH3 + $\underline{\hspace{1cm}}$ H2SO4 \rightarrow (NH4)2SO4

c. $\underline{\hspace{1cm}}$ H2 + $\underline{\hspace{1cm}}$ N2 \rightarrow NH3

d. $C_4H_{10} + O_2 \rightarrow CO_2 + H_{20}$

e. $\underline{\hspace{1cm}}$ C + $\underline{\hspace{1cm}}$ Fe₂O₃ \rightarrow $\underline{\hspace{1cm}}$ Fe + $\underline{\hspace{1cm}}$ CO

Based on the solubility rules, which one of the following compounds should be insoluble in water? 2.

A. NaCl

- B. MgBr₂
- C. FeCl₂
- D. AgBr
- E. ZnCl₂
- During a titration the following data were collected. A 10 mL portion of an unknown acid solution (HA) was 3. titrated with 1.0 M NaOH. 40 mL of the base were required to neutralize the sample.
- (a) What is the molarity of the acid solution?
- (b) How many moles of acid are present in 2.0 liters of this unknown solution?

4. What is the molar concentration of chloride ions in a solution prepared by mixing 100 mL of 2.0 M KCl with 50 mL of a 1.5 M CaCl₂ solution?

5.		red 200 mL of the b			HCl solution was titrated w y grams of acid are present	
6.		gen gas has a volum volume of nitrogen?		The gas is heated	to 220°C at constant press	sure.
	A. 2.94 L	B. 19.3 L		D. 54.5 L	E. 356 L	
7.	A sample of N ₂ gas occupies 2.40 L at 20°C. If the gas is in a container that can contract or expand at constant pressure, at what temperature will the N ₂ occupy 4.80 L?					
	A. 10°C	B. 40°C	C. 146°C	D. 313°C	E. 685°C	
8.	Calculate the volu	ime occupied by 25.	.2 g of CO2 at 0.84	atm and 25°C.		
	A. 0.060 L	B. 1.34 L	C. 16.9 L	D. 24.2 L	E. 734 L	

9.		· ·	elium needed to inflated a temperature of -3		ume of 100,000 L at an
	A. 1.68 kg	B. 3.36 kg	C. 5.21 kg	D. 6.74 kg	E. 5120 kg

- 10. Calculate the density of Br₂(g) at 59.0°C and 1.00 atm pressure.
 - A. 27.2 g/L B. 5.83 g/L C. 769 g/L D. 22.4 g/L E. 3.45 g/L

Determine the molar mass of chloroform gas if a sample weighing 0.389 g is collected in a flask with a volume of 102 cm³ at 97°C. The pressure of the chloroform is 728 mmHg.

A. 187 g/mol

B. 121 g/mol C. 112 g/mol D. 31.6 g/mol

E. $8.28 \times 10^{-3} \text{ g/mol}$

12. When active metals such as magnesium are immersed in acid solution, hydrogen gas is evolved. Calculate the volume of H₂(g) at 30.1°C and 0.85 atm that can be formed when 275 mL of 0.725 M HCl solution reacts with excess Mg. Balance the equation first.

 $\underline{\hspace{0.1cm}}Mg(s) + \underline{\hspace{0.1cm}}HCl(aq) \rightarrow \underline{\hspace{0.1cm}}MgCl_{2}(aq) + \underline{\hspace{0.1cm}}H_{2}(g)$

A. 3.4×10^{-3} L

B. 2.2 L C. 2.9 L

D. 5.8 L

E. 11.7 L

Calculate the amount of heat necessary to raise the temperature of 12.0 g of water from 15.4°C to 93.0°C. The 13. specific heat of water = $4.18 \text{ J/g} \cdot ^{\circ}\text{C}$.

A. 0.027 J

B. 324 J

C. 389 J

D. 931 J

E. 3,890 J

14. Find the standard enthalpy of formation of ethylene, C₂H₄(g), given the following data:

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(1)$$

$$\Delta H^{\circ}f = -1411 \text{ kJ}$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H^{\circ}f = -393.5 \text{ kJ}$$

$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(1)$$

$$\Delta H^{\circ}f = -285.8 \text{ kJ}$$

- A. 52 kJ
- B. 87 kJ
- C. 731 kJ D. 1.41×10^3 kJ
- E. $2.77 \times 10^3 \text{ kJ}$

15. Glycine C₂H₅O₂N is important for biological energy. The combustion reaction of glycine is given by the equation

$$4C_2H_5O_2N(s) + 9O_2(g) \rightarrow \ 8CO_2(g) + 10H_2O(l) + 2N_2(g) \ \Delta H^\circ_{rxn} = -3857 \ kJ$$

- Given that $\Delta H^{\circ}_{f}[CO_{2}(g)] = -393.5 \text{ kJ/mol}$, and $\Delta H^{\circ}_{f}[H_{2}O(1)] = -285.8 \text{ kJ/mol}$.
- Calculate the enthalpy of formation ΔH°_{f} per mole of glycine.
- A. -537.2 kJ/mol

- B. -268.2 kJ/mol C. 2,149 kJ/mol D. -3,178 kJ/mol E. -964 kJ/mol

16. Calculate the enthalpy change for the reaction

$$2C_8H_{18}(1) + 21O_2(g) \rightarrow 8CO(g) + 8CO_2(g) + 18H_2O(1)$$

$$\Delta H^{\circ}_{rxn} = ?$$

Given:

$$2C_8H_{18}(1) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(1)$$

$$\Delta H^{\circ}_{rxn} = -11,020 \text{ kJ}.$$

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

$$\Delta H^{\circ} f = -566.0 \text{ kJ}.$$

- A. $1.0454 \times 10^4 \text{ kJ}$ B. -8,756 kJ C. $1.1586 \times 10^4 \text{ kJ}$

- D. -6,492 kJ E. $-1.0454 \times 10^4 \text{ kJ}$

17. The combustion of butane produces heat according to the equation

$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(1)$$

$$\Delta H^{\circ}_{rxn} = -5,314 \text{ kJ}$$

What is the heat of combustion per gram of butane?

E.
$$-15,440 \text{ kJ/g}$$

18. The combustion of butane produces heat according to the equation

$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(1)$$

$$\Delta H^{\circ}_{rxn} = -5,314 \text{ kJ}$$

How many grams of CO₂ are produced per 1.00×10^4 kJ of heat released?

19. Review net ionic equations. You will be given solubility rules.

20. BE SURE TO UNDERSTAND CONCEPTS AS THERE WILL BE NUMEROUS CONCEPTUAL QUESTIONS.

Answer Key for Test "Practice exam 2.tst", 3/16/2008

No. in	No on	Compat
Q-Bank	No. on Test	Correct Answer
3-101	1	
3-101	1	$a. 2NaNO_3 \rightarrow 2NaNO_2 + O_2$
		b. $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$
		$c. 3H_2 + N_2 \rightarrow 2NH_3$
		d. $2C_4H_{10} + 13 O_2 \rightarrow 8CO_2 + 10H_2O$
		e. $3C + Fe_2O_3 \rightarrow 2Fe + 3CO$
4-10	2	D
4-95	3	a. 4.0 M b. 8.0 moles
4-93	4	2.3 M
4-97	5	The acid is 2 molar. 36.5 gm of HCl
5-4	6	D
5-6	7	D
5-16	8	С
5-22	9	D
5-25	10	В
5-32	11	В
5-48	12	С
6-4	13	Е
6-20	14	A
6-22	15	A
6-27	16	В
6-32	17	В
6-37	18	D